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statistical results from additional (secondary) outcome measures were reported and interpreted only to formulate 
new hypotheses for further exploration56–60.

Results
%ØÐÅÒÉÍÅÎÔ υȡ %ÆÆÅÃÔ ÏÆ ÍÕÌÔÉÐÌÅ ÁÓÓÉÓÔÉÖÅ ÁÎÄ ÐÅÒÔÕÒÂÁÔÉÖÅ ÃÏÎÔÒÏÌÌÅÒÓ ÏÎ ÂÅÁÍ ×ÁÌËȤ
ÉÎÇȢ Primary outcome measures. All three assistive controllers (S-D, D, and S) increased the median distance 
healthy participants (n = 10) could walk along a 30 mm-wide (4 m-long) beam by factors of 2.0, 2.0, and 1.6, 
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were not significantly affected by any of the assistive controllers. However, a significant decrease in trunk angle 
centroidal frequency 
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Qualitative observations. Sagittal balance during normal standing is maintained primarily by moments exerted 
by the ankle plantarflexors/dorsiflexors67, but a secondary dynamic hip flexion/extension strategy similar in func-
tion to that described for lateral balancing is known to occur in the case that ankle moments are insufficient or 
their efficacy is inhibited by a small or soft support surface34,67. With a reduced AP BoS, a mixture of primary and 
secondary balancing strategies was visually observed in both subject groups in this experiment. During condition 
IN, the healthy subjects exhibited persistent and high-frequent ankle plantarflexion/dorsiflexion and varying 
degrees of secondary hip motion; most performed the task with little or no motion of the upper body and with 
only minor motion of the knee joints. When controller D was active, little change in overall balancing strategy was 
observed amongst this group, but the frequency, and in some cases also the amplitude, of joint motions appeared 
to decrease.

In comparison, during all conditions, the individuals with chronic stroke exhibited clear asymmetry in the 
joint motions of the lower extremities (activity was visible almost exclusively on the non-paretic side) and a 
compensatory shifting of activity upwards, resulting in an increase of secondary hip flexion/extension and arm 
motion; in addition, these secondary strategies appeared to be generally more exaggerated, less coordinated 
with other body segments, and less consistent within and between subjects than in the healthy group. When the 
controller (D) was activated, a general reduction of the frequency of all joint motions was visible amongst the 
individuals with stroke, with compensatory secondary activity of the knees and upper extremities most notice-
ably reduced. Concurrently, the balance corrections at all sites appeared to be generally less random and more 
coordinated.

Figure 3. Description and main results of Experiment 2. (a) Illustration of ‘damper’ (D) balance controller. (b) 
Balancing tasks with reduced AP or ML bases of support. (c) Individual with chronic stroke wearing the GyBAR 
during AP balancing task over reduced BoS (100 mm). (d) Example primary outcomes (stance duration) and 
time series data for the individual with chronic stroke who exhibited the median degree of improvement with 
controller D, subject S1 (□). Shown are the trunk pitch angle θ, angular impulse ΔHAP, and exerted gyroscopic 
moment τAP. (e) Duration standing for all healthy controls (n = 5) and individuals with chronic stroke (n = 5), 
normalized to condition ‘inactive’ (IN) and displayed in logarithmic scale; shown are condition ‘free’ (FR) and 
IN and assistive controller D. Subjects H1 (+), H4 (○), and S4 (∇) all reached the maximum score in condition 
D. (f) Centroidal frequency of the trunk pitch angle θ for all subjects. The dashed line represents the median 
value for healthy participants in condition IN with a full BoS.
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